miR-150 inhibits terminal erythroid proliferation and differentiation
نویسندگان
چکیده
MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses commitment of hemoglobinization and CD235a labeling in both cell types. Erythroid proliferation is also inhibited via inducing apoptosis and blocking the cell cycle when miR-150 is overexpressed. In contrast, miR-150 inhibition promotes terminal erythropoiesis. 4.1 R gene is a new target of miR-150 during terminal erythropoiesis, and its abundance ensures the mechanical stability and deformability of the membrane. However, knockdown of 4.1 R did not affect terminal erythropoiesis. Transcriptional profiling identified more molecules involved in terminal erythroid dysregulation derived from miR-150 overexpression. These results shed light on the role of miR-150 during human terminal erythropoiesis. This is the first report highlighting the relationship between miRNA and membrane protein and enhancing our understanding of how miRNA works in the hematopoietic system.
منابع مشابه
بررسی تاثیر مهار mir-150 بر بیان زنجیره آلفای هموگلوبین در رده سلولیK562.
Background and Aim: MicroRNAs (miRNA) are small noncoding RNA molecules that transcribed by RNA polymerase II. After biogenesis, these molecules act by incorporation into the RNA-induced silencing complex (RISC). MiRNAs are involved in multiple physiological and pathological processes such as proliferation, differentiation, apoptosis and cancer. Recently several studies reported down regulation...
متن کاملDeregulated KLF4 Expression in Myeloid Leukemias Alters Cell Proliferation and Differentiation through MicroRNA and Gene Targets.
Acute myeloid leukemia (AML) is characterized by increased proliferation and blocked differentiation of hematopoietic progenitors mediated, in part, by altered myeloid transcription factor expression. Decreased Krüppel-like factor 4 (KLF4) expression has been observed in AML, but how decreased KLF4 contributes to AML pathogenesis is largely unknown. We demonstrate decreased KLF4 expression in A...
متن کاملmiR-451 Up-regulation, Induce Erythroid Differentiation of CD133+cells Independent of Cytokine Cocktails
Objective(s): Erythropoiesis is regulated by some extrinsic and intrinsic factors as microRNAs (miRNAs). miRNAs are endogenously small non-coding regulatory RNAs which play vital roles in the variety of cellular fate, critical processes; growth, apoptosis, metabolism, survival of the cells and specially differentiation. Several miRNAs such as miR-16 and miR-451 have been shown to be correlate...
متن کاملSimultaneous regulation of miR-451 and miR-191 led to erythroid fate decision of mouse embryonic stem cell
Objective(s): Various microRNAs (miRNAs) are expressed during development of mammalian cells, when they aid in modulating gene expression by mediating mRNA transcript cleavage and/or regulation of translation rate. miR-191 and miR-451 have been shown to be critical regulators of hematopoiesis and have important roles in the induction of erythroid fate decision. So, the aim of this study is inve...
متن کاملmiR-218 Inhibits Erythroid Differentiation and Alters Iron Metabolism by Targeting ALAS2 in K562 Cells
microRNAs (miRNAs) are involved in a variety of biological processes. The regulatory function and potential role of miRNAs targeting the mRNA of the 5'-aminolevulinate synthase 2 (ALAS2) in erythropoiesis were investigated in order to identify miRNAs which play a role in erythroid iron metabolism and differentiation. Firstly, the role of ALAS2 in erythroid differentiation and iron metabolism in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015